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SUMMARY

A high-order accurate upwind compact di�erence scheme with an optimal control coe�cient is developed
to track the �ame front of a premixed V-�ame. In multi-dimensional problems, dispersion e�ect appears
in the form of anisotropy. By means of Fourier analysis of the operators, anisotropic e�ects of the
upwind compact di�erence schemes are analysed. Based on a level set algorithm with the e�ect of
exothermicity and baroclinicity, the �ame front is tracked. The high-order accurate upwind compact
scheme is employed to approximate the level set equation. In order to suppress numerical oscillations,
the group velocity control technique is used and the upwind compact di�erence scheme is combined
with the random vortex method to simulate the turbulent premixed V-�ame. Distributions of velocities
and �ame brush thickness are obtained by this technique and found to be comparable with experimental
measurement. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In turbulent premixed combustion, vortices with small structures exist and interact with the
velocity �eld. Many aspects of the interaction between �uid turbulence and combustion
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heat release are still not fully understood due to the complexity of the physical phenomena
involved. In recent years, a number of studies have been focused on idealized con�gurations to
aid in the understanding of premixed and non-premixed turbulent combustion. Many numerical
methods have been developed to simulate the complex �ow �elds. However, as most of these
methods are low-order accurate schemes, numerical results were generally unsatisfactory due
to overdissipation. It is therefore necessary to develop high-order accurate �nite di�erence
schemes. With the traditional two-level explicit schemes, at least (N + 1) nodes are needed
to achieve Nth order accuracy. When N is large, the demand for computational time and
storage is enormous. Compact schemes have become popular due to their high-order accuracy
and small stencils. Compact schemes are methods where the derivatives are approximated
not by polynomial operators but by rational function operators on the discrete solutions.
Zhu et al. [1] proposed an upwind compact di�erence scheme with third-order accuracy
in smooth regions. In the region, where pressure gradient is large, group velocity of the
schemes can be controlled [2] to eliminate numerical oscillations, and such a scheme has
been successfully used to simulate three-dimensional complex �ow �elds.
The study of turbulent �ames is one of the most defying areas of engineering sciences

due to the complexity of the physical phenomena when coupled with chemical reactions.
One of the common �ame con�gurations is the V-shaped �ame obtained by introducing a
rod in a stream of fully premixed reactants as a �ame stabilizer [3–5]. While Cheng et al.
[6–8] provided some experimental data of the V-�ame, complexity of the �ow �eld makes
detailed measurements rather di�cult. Numerical simulation therefore plays an important role
in investigating such �ow �elds. On the interaction of premixed �ames with turbulence,
direct numerical simulation (DNS) has been employed to simulate the �ow �eld with
low turbulent intensities [9, 10]. Baum et al. [11] conducted two-dimensional DNS of H2–air
turbulent premixed �ames and showed the e�ects of turbulence characteristics on the local
�ame structure. They showed that isolated pockets of unburnt gas are observed on the burnt
side. However, DNS has been restricted to low Reynolds number �ow.
In V-�ame, when reaction rate is high and the reaction zone is correspondingly thin, the

�ame can be considered to be of zero thickness, separating burnt and unburnt regions with dif-
ferent constant densities and propagates into the fresh mixture at a local curvature-dependent
�ame speed. Pindera and Talbot [12], Rhee et al. [13] and Chan et al. [14] adopted the
random vortex method [15] to simulate the turbulent V-�ame with e�ects of exothermicity
and baroclinicity. More recently, Chan et al. [16] investigated the e�ect of intense turbulence
on turbulent premixed V-�ame. Numerical results indicated that free-stream turbulence a�ects
turbulence statistics greatly including the conditional and unconditional mean axial and trans-
verse velocities, �uctuation velocities and Reynolds stresses. In their work, the �ame front is
tracked by a level set equation approximated by an upwind scheme. However, the numerical
e�ect of the di�erence scheme has not been discussed in their work.
The objective of this paper is to develop a more e�ective numerical method for simulating

premixed V-�ame. To track the �ame front, an upwind compact di�erence scheme with a
control coe�cient is used and the group velocity control technique is employed to prevent
nonphysical oscillations. Moreover, in multi-dimensional problems, the e�ect of numerical
errors appears in the form of anisotropy. In order to analyse the anisotropic e�ect, a multi-
dimensional model equation is considered so as to obtain an optimal value of the control
coe�cient for the upwind compact di�erence scheme. The present method combined with
Runge–Kutta time discretization [17] is used to simulate the turbulent premixed V-�ame.
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Distributions of mean velocities, �uctuation velocities and �ame brush thickness are presented
and compared with theoretical as well as experimental measurements.

2. ANALYSIS OF DIFFERENCE SCHEMES

2.1. Symbols of di�erence operators

Consider the one-dimensional unsteady advection of a scalar u with constant positive velo-
city a, given by

ut + aux=0 (1)

The solution with the initial condition u(x; 0)= u0(x) is u(x; t)= u0(x − at).
To facilitate discussion, let �x denote the approximate operator of the spatial di�erential

operator d=dx so that �x−1 · �x ≈ d=dx. Therefore,
vt + a ·�x−1�xv=0 (2)

Given v(x); x∈R1 and a positive parameter �x¿0, E�x is de�ned as a shift operator such
that (E�xv)(x)= v(x +�x). The operators �+x ; �

−
x ; �0x ; �

2
x are de�ned as

�+x :=E�x − I; �−
x := I − E−1

�x ; �0x :=
1
2 (�

+
x + �−

x ); �2x := �+x �
−
x = �−

x �+x (3)

where I is an identity operator. The subscript x indicates that the operator is applied in the x
direction. Based on Fourier transform, the symbols of the operators �+x ; �

−
x ; �0x ; �

2
x are

�̂+x = cos � − 1 + i sin �; �̂−
x =1− cos �+ i sin �

�̂0x =
1
2(�̂

+
x + �̂−

x )= i sin �; �̂2x = �̂+x �̂
−
x =2cos � − 2

where −�6 �6� and i2 =−1. Therefore, for the forward di�erence operator �+x , the real and
imaginary parts of the symbol of the operator are Kr = cos � − 1 and Ki = sin �, respectively.
Similarly, for the backward di�erence operator �−

x , Kr = 1−cos �, Ki = sin � and for the central
di�erence operator �0x , Kr ≡ 0 and Ki = sin �.
In this paper an upwind compact operator is employed for the space derivative and formu-

lated symbolically as

�c; �x := (I − 2��0x + 1
6�
2
x)

−1(�0x − 2��2x) (4)

and the real and imaginary parts are, respectively, given by

Kr =
2
3 (cos � − 1)2�

1
9 cos

2 �+ 4
9 cos �+

4
9 + 4�

2 sin2 �
(−�6 �6�) (5)

Ki =
8�2 sin � − 8�2 sin � cos �+ 1

3 sin � cos �+
2
3 sin �

1
9 cos

2 �+ 4
9 cos �+

4
9 + 4�

2 sin2 �
(−�6 �6�) (6)
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where a · �¿ 0 and − 1
3¡�¡ 1

3 . If � �=0, it achieves third-order accuracy, whereas it can achieve
fourth-order accuracy when �=0.

2.2. Numerical stability

The upwind compact di�erence operators �c; �x with control coe�cient � are used for discretiz-
ing the space derivative in Equation (1), the third-order Runge–Kutta method is used for
approximating the time derivative. Equation (2) can then be rewritten as

@v
@t
=Lh(v) (7)

where Lh is the spatial di�erence operator, which is a third-order upwind compact di�erence
operator. The third-order Runge–Kutta method can be expressed as

v(1) = �1vn + �1�tLh(vn)

v(2) = �2vn + �2[v(1) + �tLh(v(1))]

v(n+1) = �3vn + �3[v(2) + �tLh(v(2))]

(8)

with �1 = 1; �2 = 3
4 ; �3 =

1
3 ; �1 = 1; �2 =

1
4 ; �3 =

2
3 and Neumann stability analysis is used to

determine the stability limit. The numerical solution can be represented by a Fourier series,
and for linear stability, substituting vnj =Gn exp(ikj�x) into Equation (8), the ampli�cation
factor G for the third-order Runge–Kutta method can be obtained as

G=1− �ke + 1
2�
2k2e − 1

6�
3k3e (9)

where �= a(�t=�x) is the Courant number, and

ke =
(12 − 2�)(cos �+ i sin �) + 4� − ( 12 + 2�)(cos � − i sin �)
( 16 − �)(cos �+ i sin �) + 2

3 + (
1
6 + �)(cos � − i sin �) (−�6 �6�) (10)

is the Fourier symbol of the upwind compact di�erence operator �c; �x .
For |G|6 1, we can obtain the relationship between �max and �. Figure 1(a) shows the

distribution of the ampli�cation factor against �, where �= 1
6 . The reason for choosing �= 1

6
is explained in the next section. Figure 1(b) shows the distribution of �max against �. If a
�rst-order explicit method is used for the approximation of time derivative, we may obtain

G=
2
3 +

1
3 cos �+ 4��(cos � − 1)− i(�+ 2�) sin �

2
3 +

1
3 cos � − 2�i sin � (11)

For |G|6 1, we have

�6 min

[
8�( 23 +

1
3 cos �)(1− cos �)− 4� sin2 �

16�2 + sin2 �

]
(12)

As �=0, the �rst-order explicit method is unstable.
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Figure 1. Distribution of |G| and �max against �: (a) distribution of |G|; and (b) distribution of �max.

2.3. Anisotropic e�ect

In multi-dimensional problems the dispersion e�ect appears in the form of anisotropy.
Consider the two-dimensional unsteady advection of scalar u with constant velocity a and
b, given by

@u
@t
+ a

@u
@x
+ b

@u
@y
=0 (13)

with initial condition u(x; y; 0)= exp{i〈K ·X〉}, where K=[k1; k2]T and X=[x; y]T, k1; k2 are
wave numbers in the x and y directions, respectively. De�ning

l=
[

a√
a2 + b2

;
b√

a2 + b2

]T
(14)

it can be rewritten as l=[cos �; sin �]T, where � is the azimuthal angle. The exact solution
for Equation (13) with the initial condition can be expressed as

u(X; t)= exp{i[K ·X −
√

a2 + b2K · lt]} (15)

The semi-discrete approximation for Equation (13) is thus

@uij

@t
+ a

�xuij

�x
+ b

�yuij

�y
=0 (16)

with initial condition u(x; y; 0)= exp{i〈K ·X〉}, where �xuij=�x; �yuij=�y are approximations
of the �rst derivatives @u=@x; @u=@y, respectively. The exact solution can be expressed as

u(X; t)= exp{−
√

a2 + b2K · lrt} · exp{iK · [X −
√

a2 + b2 lit]} (17)

Hence,

lr =

[
cos �

K (1)
r

�
; sin �

K (2)
r

�

]T
; li =

[
cos �

K (1)
i

�
; sin �

K (2)
i

�

]T
; �= k1�x; �= k2�y
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where K (1)
r ; K (2)

r ; K (1)
i ; K (2)

i , lr and li are functions of � and �. In fact Kr and Ki are the real and
imaginary parts of the symbols of di�erence operators, respectively. Consider the projection
of numerical vectors lr and li on l, we have

l · li
‖l‖ =

1
!
[cos �K (1)

i + sin �K (2)
i ] (06 �6 2�) (18)

where K (1)
i =K (1)

i (�); K
(2)
i =K (2)

i (�) with �=! cos �; �=! sin �. The upwind compact di�er-
ence operator �c; �x with control coe�cient � is used for discretizing the space derivative in
Equation (13). To obtain an optimal value of �, consider the minimization problem:

min
�

∫ 2�

0

∫ 2�

0

(
‖l‖ − l · li

‖l‖
)2
d� d!

The computed results of Equation (18) with !m=m�=10; m=0; 1; 2; : : : ; 9 for di�erent values
of � are shown in Figure 2. It can be seen that the upwind compact operators with di�erent
coe�cients � have di�erent anisotropic e�ect for high wave numbers. While the coe�cient �
is increased, the anisotropic e�ect for the high wave numbers is alleviated. However, when �
is above a critical value, the anisotropic e�ect for high wave numbers is increased, indicating
that there is an optimal value �opt and the range of wave numbers with small anisotropic e�ect
is increased. In considering computational e�ciency, �opt is approximately equal to 1

6 .

3. GOVERNING EQUATIONS OF THE PREMIXED V-FLAME

The main assumptions are as follows:

(1) The �ow is two-dimensional.
(2) The �ow is regarded as incompressible on either side of the �ame due to low Mach

number.
(3) Vorticity is produced by baroclinic torque through the interaction of density gradients

and pressure gradients.

The velocity �eld for the combustion process at low Mach number can be decomposed into
three components

U=Us +Uv +Up (19)

with the individual components satisfying the following conditions:

∇ ·Us = ṁ�(x − xf ); ∇ ×Us=0 (20)

∇ ×Uv =!(x); ∇ ·Uv=0 (21)

Up =∇�; ∇ ·Up=0 (22)

where Us is the velocity �eld due to volume expansion across the �ame front, Uv is the
rotational velocity �eld due to vorticity, Up is the potential velocity �eld, the ratio of gas
expansion is 	=(
u−
b)=
u, 
u and 
b are gas densities of the unburnt and burnt mixtures, Su
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Figure 2. Anisotropic e�ect for the upwind compact schemes with di�erent control coe�cients �.
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is the relative �ame speed with respect to the unburnt side, xf is the position vector of the �ame
front, and �(·) is the two-dimensional Dirac delta function. This is a Poisson equation with a
singular volume source con�ned to the �ame surface. Based on this equation, the irrotational
part of the velocity �eld can be derived. The volume source ṁ= Sb−Su = [	=(1− 	)]Su is the
net volume �ux generated in the burnt products and consumed in the reactants.
The �ame propagation is described by a scalar �eld  (x; y; t) such that  ¿0 in the unburnt

region,  ¡0 in the burnt region and  =0 at the �ame front. As the �ame propagates with
a burning speed Su, the equation of �ame propagation without advection is given by

@ 
@t
+ Su|∇ |=0 (23)

It is also advected by the accompanying �ow �eld and the �eld equation becomes

@ 
@t
+U · ∇ + Su|∇ |=0 (24)

where U is the convection velocity of the unburnt side. Following the idea of Markstein [18],
the laminar burning speed for weak curvature is given by

Su = S0u (1− ��) (25)

where S0u is the laminar burning speed of a planar �ame, �= − ∇ · n is the local curvature
of �ame front, and � is the Markstein length scale.
The distribution of vorticity is described by the Navier–Stokes equations in the form of

@!
@t
+ (U · ∇)!= 1

Re
∇2! (26)

The baroclinic torque term is a source of vorticity through the interaction of density gradients
and pressure gradients. Pressure gradients tangential to the �ame cause di�erent accelerations
in the unburnt and burnt sides with di�erent densities and hence vorticity is produced at the
�ame front by the mean density gradient across the �ame and the pressure gradient tangential
to the �ame. Based on Hayes [19], the vorticity jump [!] across the �ame front can be
determined as

[!]=
(
1

b

− 1

u

)
∇s(
sSu)− 
b − 
s


uSu

[
dUt
d

+Ut(∇tUt − Vn�)− Vn
@Vn
@

]
(27)

where Ut is the �ow velocity at the �ame front in the tangential direction of the �ame
front, ∇t is its gradient along the �ame front, Vn is the absolute normal �ame speed, and
d=d denotes the time derivative taken at a point on the front moving in the direction normal
to the discontinuity.

4. NUMERICAL METHOD

4.1. Flame propagation

In this paper, an explicit method is presented to track the �ame front. The equation for �ame
propagation is given by the Hamilton–Jacobi Equation (23) with initial condition

 (x; y; t=0)=±d(x; y) (28)
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where d is the minimum distance from the point (x; y) to the �ame front and the ± sign is
chosen for the unburnt=burnt region in the computational domain. The semi-discrete form of
Equation (23) can be rewritten as

d ij

dt
= − S0u (1− ��)f{[(max(�x−1 · �c;1=6x  ij; 0))2 + (min(�x−1 · �c;−1=6x  ij; 0))2];

[(max(�y−1 · �c;1=6y  ij; 0))2 + (min(�y−1 · �c;−1=6y  ij; 0))2]} (29a)

where f(a; b)= (a+ b)1=2. The third-order accurate upwind compact di�erence operator with
group velocity control is employed to approximate the advection part such that

U · ∇ ≈ −U+
ij

�x
�c;1=6x  ij − U−

ij

�x
�c;−1=6x  ij − V+

ij

�y
�c;1=6y  ij − V−

ij

�y
�c;−1=6y  ij

+
1
�x

��0x[’x( ij)ssx( ij)�2x ij]− 1
2�x

��2x[’x( ij)�2x ij]

+
1
�y

��0y[’y( ij)ssy( ij)�2y ij]− 1
2�y

��2y[’y( ij)�2y ij] (29b)

where � ∼ O(1); ssx = sgn(�0x ij · �2x ij); ssy = sgn(�0y  ij · �2y ij) and U±
i; j = Ui; j ± |Ui; j|=2;

V±
i; j =Vi; j±|Vi; j|=2. The last two terms are group velocity control terms to eliminate numerical
oscillations in the solution. �c;±(1=6)x ; �c;±(1=6)y are upwind compact di�erence operators satisfying
the relations,

2
3�
c;1=6
x  ij + 1

3�
c;1=6
x  i−1; j = 1

6 i+1; j + 2
3 ij − 5

6 i−1; j

1
3�
c;−1=6
x  i+1; j + 2

3�
c;−1=6
x  ij = 5

6 i+1; j − 2
3 ij − 1

6 i−1; j
(i=1; 2; : : : ; I − 1) (30a)

2
3�
c;1=6
y  ij + 1

3�
c;1=6
y  i; j−1 = 1

6 i; j+1 + 2
3 ij − 5

6 i; j−1

1
3�
c;−1=6
y  i; j+1 + 2

3�
c;−1=6
y  ij = 5

6 i; j+1 − 2
3 ij − 1

6 i; j−1
(j=1; 2; : : : ; J − 1) (30b)

At the boundary, the second-order accurate one-side di�erence approximations are used such
that

�c;1=6x  0; j = (−3 0; j + 4 1; j −  2; j)=2; �c;−1=6x  I; j=(3 I; j − 4 I−1; j +  I−2; j)=2

�c;1=6y  i;0 = (−3 i;0 + 4 i;1 −  i;2)=2; �c;−1=6y  i; J =(3 i; J − 4 i; J−1 +  i; J−2)=2
(31)

and �c;±(1=6)x  ij; �
c;±(1=6)
y  ij can be obtained by the alternating direction sweeping method.
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To avoid spurious oscillations while maintaining accuracy of the scheme, a switching
function ‘’j’ given by Swanson [20], is used

’x( i; j)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1;

| i+1; j − 2 i; j +  i−1; j|
0:5(| i+1; j −  i; j|+ | i; j −  i−1; j|) + 0:5| i+1; j + 2 i; j +  i−1; j| ¿C

0;
| i+1; j − 2 i; j +  i−1; j|

0:5(| i+1; j −  i; j|+ | i; j −  i−1; j|) + 0:5| i+1; j + 2 i; j +  i−1; j|¡C

(32)

where C is a threshold, taken as 0.95 in this paper. Also, ’x takes the values of 1 and 0
in the steep-and-smooth and smooth regions, respectively. The switching function guarantees
that the scheme is of O(�x3) in smooth regions.

4.2. Velocity �eld due to exothermicity

Based on the �-�eld, the updated location of the �ame front can be determined by the contour
of  n

i; j corresponding to  =0. The grid cells with four grid values of di�erent signs were
located and then bisected by the line separating the burnt region from that of the unburnt
region. The position and length of each �ame segment within these cells determine the position
and strength of the volumetric source. The volumetric source of strength m in these grid cells
containing the �ame segments can be calculated by m=[	=(1 − 	)]Su�L, where �L is the
length of the �ame segment. It becomes the source term of the Poisson equation for the
velocity potential due to exothermicity.

∇2�i; j= qi; j (33)

where qi; j is the source term, �i; j can be obtained by using a standard Poisson solver on an
Eulerian grid. The volume source of strength m=[	=(1−	)]Su�L at the midpoint of the �ame
segment within a cell needs to be distributed to the nearest grid points with value qi; j using
an area-weighting scheme. The corresponding velocity �eld can be calculated using central
compact di�erence of �i; j and can be rewritten as

1
6
us; i+1; j +

2
3
us; i; j +

1
6
us; i−1; j =

1
�x

�0x�i; j

1
6
vs; i; j+1 +

2
3
vs; i; j +

1
6
vs; i; j−1 =

1
�y

�0y�i; j

(34)

As the open V-�ame is uncon�ned, Neumann boundary condition is used to match the total
volume generated inside the computational domain with the net out�ow across the boundaries,∫∫

D
∇2� dx dy=

∫∫
D
q dx dy= �

∫
@D

∇� · n ds (35)

4.3. Velocity �eld due to baroclinicity

The vorticity !=∇ ×Uv is produced by the baroclinic torque term −∇(1=
)× ∇p in the
vorticity transport equation. The vorticity jump [!] across the �ame front can be determined

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:701–720
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by Hayes’s formulation [19]. Flame-induced vortices are injected on the burnt side at each
time step such that !b = [!] with circulation �b =!bSu�L�t. The area of each blob is given
by �A= Sb�L�t which is equivalent to a vortex blob sweeping out an area of length �L
and width Sb�t. Assuming the blob to be circular, its radius is simply de�ned as c=

√
�A=�.

The vorticity �eld in the computational domain forms the source term in the Poisson equa-
tion for the vorticity stream function �i; j such that

∇2�i; j= − !i; j (36)

where !i; j at cell corners on an Eulerian grid are evaluated again by distributing the circulation
within each cell using the area weighting method.
Neumann boundary condition is employed such that the negative of the total circulation

inside the domain is equal to the contour integral of the normal derivative of the boundaries of
the stream function. The corresponding velocity �eld can be solved using the central compact
di�erence approximation of �i; j.

1
6
vv; i+1; j +

2
3
vv; i; j +

1
6
vv; i−1; j =− 1

�x
�0x�i; j

1
6
uv; i; j+1 +

2
3
uv; i; j +

1
6
uv; i; j−1 =

1
�y

�0y�i; j

(37)

The combination of rotational velocity together with the irrotational velocity due to exothermi-
city and the uniform potential velocity yield the total velocity that moves the �ame by
advection.

4.4. Vortex motion

The distribution of vorticity, which is described by the Navier–Stokes equations, can be
decomposed by means of a fractional step method as

@!
@t
+ (U · ∇)!=0 (38a)

and

@!
@t
=
1
Re

∇2! (38b)

The vortex blobs moving with local �uid velocities can be calculated using the third-order
Runge–Kutta method. Solution to Equation (38b) is obtained by Chorin’s random vortex
method in which the di�usion process during each time step �t is modelled as a random
walk with a Gaussian distribution of zero mean and standard deviation (2�t=Re)1=2.
In order to avoid blowout, the �ame is numerically anchored at a �xed point. The �ame

is held at the �ame holder by placing an initial ignition  fh �eld on a grid at the location of
the �ame holder and allowing  fh to act as a source of ignition impulse. As the �ame front
moves with the accompanying �ow �eld, it is continuously re-ignited at the location of the
�ame holder by superimposing  fh onto the existing  .
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5. NUMERICAL EXAMPLES FOR MODEL EQUATIONS

To investigate the behaviour of the method, the following examples are considered.

Example 1
Consider the two-dimensional linear conservation law with variable coe�cients

ut + (−yu)x + (xu)y=0; −16 x; y6 1 (39)

with periodic boundary conditions. The initial condition is chosen such that

u(x; y; 0)=

⎧⎨
⎩

a;
√

x2 + y26 0:5

b;
√

x2 + y2 ¿ 0:5
(40)

where a and b are constants. The initial condition therefore corresponds to a characteristic
function on a circle of rotation with radius 0.5. Figure 3 shows the results at t=0:8, using
200× 200 points. The initial values inside and outside the circle are denoted in red and in
blue, respectively. Third-order Runge–Kutta time discretization with central compact di�erence
approximation (�=0:0) is employed to discretize the spatial derivatives, and is shown in
Figure 3(a). The numerical oscillations are obvious particularly around the circumference of
the circle, and some degree of e�ects of anisotropy is found. Figure 3(b) shows that numerical
solutions using the third-order upwind compact di�erence scheme, with a control coe�cient
�=0:1 is improved. However, some oscillations in the numerical solutions still exist inside
the circle. Figure 3(c) shows the results when �= 1

6 is used in the upwind compact di�erence
scheme. It can be seen that oscillations are very slight and the solutions are much more
satisfactory. Therefore, in this paper, an optimal value of control coe�cient in the upwind
compact di�erence scheme is chosen as �opt = 1

6 .

Example 2
Consider the equation

ut − c
√
1 + u2x =0 (41a)

Given continuous initial data, it is well-known that the above equation corresponds to motion
with constant normal velocity c. The corresponding level set equation is given by

�t + c|∇�|=0 (41b)

which describes constant normal speed of each level set of �. The above equation is evaluated
using the method in Equation (29a), where �opt = 1

6 . Figure 4 shows the zero level curves of
� in di�erent times at t=0; 0:2; 0:4 and 0.6. It can be seen that each curve is equidistant from
the original curve, shown in red.

6. NUMERICAL SIMULATION OF THE PREMIXED V-FLAME

In this paper, numerical simulation of a premixed V-�ame is carried out using the up-
wind compact di�erence scheme with an optimal value of control coe�cient �opt. In order
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Figure 3. (a) Central compact di�erence scheme with �=0:0; (b) third-order upwind
compact di�erence scheme with �=0:1; and (c) third-order upwind compact di�erence

scheme with �= 1
6 .

to compare with experimental data available, conditions of the experiments of Cheng et al.
[6–8] are used. A schematic diagram of the experimental set-up is shown in Figure 5. Pa-
rameters used are in�ow velocity U0 = 5:5 m s−1, equivalence ratio �=0:7 for C2H4=air,
laminar burning speed Sb = 0:44 m s−1, Markstein length scale �=10−3 m and Reynolds
number Re=2:8× 104, where the characteristic length in de�ning Re is taken as 50 mm,
which is the diameter of the inner coaxial cylinder. The computational domain is taken as
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Figure 4. Numerical solution using the third-order upwind compact scheme.
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Figure 5. V-anchored �ame geometry.
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Figure 6. Distribution of mean axial velocity.

150× 150 mm2, with a grid system of 151× 151 nodes. Based on Courant condition of stabil-
ity, the nondimensional time step is chosen as 0.004. Free-stream turbulence is incorporated
into the computation domain by injecting vortices of equal size and strength at 50 mm up-
stream of the �ame holder. The vortices are injected at random positions in the interval
between y=±50 mm. Equal numbers of positive and negative vortices are injected at each
injection. Vortices of radius 1 mm and nondimensional circulation �=0:01 are used in our
computation. In this paper, 48 vortices are injected for every 12 time steps. The statistic
results are obtained by averaging the instantaneous values over 2000 time steps.
In order to demonstrate the performance of this method and reveal some of the mechanisms

of gas expansion on the �ow �eld, di�erent density ratios are simulated. Figure 6 shows the
axial velocity distributions at di�erent upstream positions. The �ame holder is located at
x=50 mm. It can be seen that the �ow is accelerated across the �ame front and higher
density ratio increases the velocity more signi�cantly. Also, the velocity is at a peak near the
central axis. The distributions of mean transverse velocity from x=60mm to x=110mm are
shown in Figure 7. Similar to the axial velocity distribution, higher density ratio also causes
an increase in V.
The distribution of �uctuating velocities upstream of the �ame holder at x=25 mm,

computed from the mean and instantaneous values, is shown in Figure 8. It can be seen
that free-stream turbulence is nearly isotropic, with average level of about 10%, showing
reasonable agreement with Cheng’s experimental observations.
By means of an intermittency factor 	, the Eulerian-averaged (unconditioned) mean velocity

can be de�ned as

U = (1−	)Ur + (	)Up
V = (1−	)Vr + (	)Vp

(42)

where subscripts r and p correspond to conditioned mean velocities in the reactants and in the
products, respectively. 	 represents the probability of the products, which varies from 0.0 in
the reactants to 1.0 in the products across the �ame brush. Similar de�nition for �uctuating
velocities can also be obtained. 	 can be obtained by sampling the time record of a variable
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Figure 7. Distribution of mean transverse velocity.

Figure 8. Distribution of �uctuating velocities Urms and Vrms at x=25mm.

and evaluating Np=Nt where Np is the number of samples associated with product and Nt is
the total number of samples. Figure 9 shows the distribution of the intermittency factor at
x=100mm. It can be seen that the numerical solutions using the upwind compact di�erence
scheme with the optimal value of control coe�cient of 1

6 are comparable to experimental
measurements.
The unconditional axial and transverse �uctuating velocity pro�les at x=100 mm are

shown in Figure 10. It can be seen that the �uctuating statistics is not very sensitive to
the density ratio. The �uctuating velocity behind the �ame front increases with the increase
of x, while in the other regions the �uctuations remain at the free-stream level of about 10%.
In turbulent premixed V-�ame, the Favre correlation u′′c′′ is determined by the two contri-
butions to scalar transport: one due to turbulent mixing and the other due to gas expansion.
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Figure 9. Distribution of intermittency factor at x=100mm.

(a) (b)

Figure 10. (a) Distribution of �uctuating velocity Urms at x=100mm; and (b) distribution of �uctuating
velocity Vrms at x=100mm.

The �rst term results in gradient di�usion and the second term in counter gradient di�usion.
A simple model for u′′c′′ was derived by Veynante et al. [21] as

u′′c′′= c(1− c)
(

	
1− 	

SL − 2&v′
)

(43)
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Figure 11. Distribution of �uctuating velocities.

where the modelling coe�cient & is of order unity, c is the progress variable, viewed as a
normalized product mass fraction, de�ned as c=Yc=Y

Eq
c , with Y Eqc as the equilibrium con-

dition of Yc, and having a value of 1 in the fully burnt product region and 0 in the fresh
reactant region. The Favre-averaged progress variable can be de�ned as c≡
c= 
c. The sign
of Equation (43) is determined by the ratio of gas expansion, the laminar burning speed
and �uctuating velocity. It is clear that Equation (43) is capable of describing the transition
from counter gradient di�usion to gradient di�usion when the ratio v′=SL is increased. From
Equation (43), counter gradient di�usion is observed when [	=(1− 	)]SL − 2&v′¿ 0, or when
	SL=[2(1− 	)&v′]¿ 1, which is consistent with the Bray–Moss–Libby theory. Transition from
counter gradient di�usion to gradient di�usion occurs when 	SL=[2(1 − 	)&v′]=1. Since the
�uctuating statistics is not sensitive to density ratio, �uctuating velocities behind the �ame
front are similar for di�erent density ratios.
Figure 11 shows that distribution of �uctuating velocities at di�erent locations behind

the �ame holder for the case when density ratio is equal to 7. It can be seen that, close
to the �ame holder at x� 55mm, [	=(1−	)]SL−2&v′ ≈ 2:52¿0, where & ≈ 0:5. In this region,
the positive u′′c′′ shows that counter gradient di�usion is dominant due to gas expansion.
With the increase of x, transition from counter gradient di�usion to gradient di�usion occurs
due to the increase of v′ when 	SL=[2(1 − 	)&v′]= 1. As larger gas expansion depends on
higher �uctuating velocity, transition from counter gradient di�usion to gradient di�usion oc-
curs at positions further downstream of the �ame holder, due to turbulent mixing. It shows
that the energy-containing eddies at the integral scale are strong enough to suppress local gas
expansion and the e�ect of gas expansion are dominated by kinematic restoration.
Figure 12 shows an instantaneous �ame con�guration with the accompanying velocity �eld

at t=12. It can be seen that our results are comparable with results obtained by the conven-
tional upwind di�erence scheme [14].
The distribution of �ame brush thickness �t along the axial direction is shown in

Figure 13. It can be seen that the numerical solutions obtained using the present method are
better than those obtained previously [14] and compared well with experimental measurements.
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Figure 12. (a) Velocity �eld, with the upwind scheme; and (b) velocity �eld, with
the upwind compact scheme.

Figure 13. Flame brush thickness.

The reason of the discrepancy of the previous prediction is likely to be due to the overdissi-
pative e�ects of the previous scheme.

7. CONCLUSIONS

In this paper, applicability of the newly developed upwind compact scheme to simulate the
complex �ow �eld in a premixed V-�ame is considered. Compared with traditional di�er-
ence schemes, upwind compact schemes have higher accuracy for the same stencil width.
Additionally, the upwind compact �nite di�erence scheme is an upwind-based scheme and is
more suitable for simulation of complex �ow �elds due to its stability. In multi-dimensional
problem, the e�ect of anisotropy in the upwind compact di�erence scheme is analysed and
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obtained an optimal value of the control coe�cient for this scheme. The scheme is of third-
order accuracy in smooth regions. The scheme is combined with Runge–Kutta time discretiza-
tion to simulate the turbulent premixed V-�ame. Numerical results are found to be satisfactory
and useful in tracking the �ame front and interaction of di�erent vortices.
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